On the Lasserre Hierarchy of Semidefinite Programming Relaxations of Convex Polynomial Optimization Problems
نویسندگان
چکیده
The Lasserre hierarchy of semidefinite programming approximations to convex polynomial optimization problems is known to converge finitely under some assumptions. [J.B. Lasserre. Convexity in semialgebraic geometry and polynomial optimization. SIAM J. Optim. 19, 1995–2014, 2009.] We give a new proof of the finite convergence property, that does not require the assumption that the Hessian of the objective be positive definite on the entire feasible set, but only at the optimal solution. In addition, we show that the number of steps needed for convergence depends on more than the input size of the problem. In particular, the size of the semidefinite program that gives the exact reformulation of the convex polynomial optimization problem may be exponential in the input size.
منابع مشابه
Convergence of the Lasserre hierarchy of SDP relaxations for convex polynomial programs without compactness
The Lasserre hierarchy of semidefinite programming (SDP) relaxations is a powerful scheme for solving polynomial optimization problems with compact semi-algebraic sets. In this paper, we show that, for convex polynomial optimization, the Lasserre hierarchy with a slightly extended quadratic module always converges asymptotically even in the case of non-compact semi-algebraic feasible sets. We d...
متن کاملOn the Hardest Problem Formulations for the 0/1 0 / 1 Lasserre Hierarchy
The Lasserre/Sum-of-Squares (SoS) hierarchy is a systematic procedure for constructing a sequence of increasingly tight semidefinite relaxations. It is known that the hierarchy converges to the 0/1 polytope in n levels and captures the convex relaxations used in the best available approximation algorithms for a wide variety of optimization problems. In this paper we characterize the set of 0/1 ...
متن کاملConvergent Semidefinite Programming Relaxations for Global Bilevel Polynomial Optimization Problems
In this paper, we consider a bilevel polynomial optimization problem where the objective and the constraint functions of both the upper and the lower level problems are polynomials. We present methods for finding its global minimizers and global minimum using a sequence of semidefinite programming (SDP) relaxations and provide convergence results for the methods. Our scheme for problems with a ...
متن کاملA bounded degree SOS hierarchy for polynomial optimization
We consider a new hierarchy of semidefinite relaxations for the general polynomial optimization problem (P ) : f∗ = min{ f(x) : x ∈ K } on a compact basic semi-algebraic set K ⊂ Rn. This hierarchy combines some advantages of the standard LP-relaxations associated with Krivine’s positivity certificate and some advantages of the standard SOS-hierarchy. In particular it has the following attractiv...
متن کاملOn Polynomial Optimization Over Non-compact Semi-algebraic Sets
We consider the class of polynomial optimization problems inf{f(x) : x ∈ K} for which the quadratic module generated by the polynomials that define K and the polynomial c − f (for some scalar c) is Archimedean. For such problems, the optimal value can be approximated as closely as desired by solving a hierarchy of semidefinite programs and the convergence is finite generically. Moreover, the Ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 21 شماره
صفحات -
تاریخ انتشار 2011