On the Lasserre Hierarchy of Semidefinite Programming Relaxations of Convex Polynomial Optimization Problems

نویسندگان

  • Etienne de Klerk
  • Monique Laurent
چکیده

The Lasserre hierarchy of semidefinite programming approximations to convex polynomial optimization problems is known to converge finitely under some assumptions. [J.B. Lasserre. Convexity in semialgebraic geometry and polynomial optimization. SIAM J. Optim. 19, 1995–2014, 2009.] We give a new proof of the finite convergence property, that does not require the assumption that the Hessian of the objective be positive definite on the entire feasible set, but only at the optimal solution. In addition, we show that the number of steps needed for convergence depends on more than the input size of the problem. In particular, the size of the semidefinite program that gives the exact reformulation of the convex polynomial optimization problem may be exponential in the input size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of the Lasserre hierarchy of SDP relaxations for convex polynomial programs without compactness

The Lasserre hierarchy of semidefinite programming (SDP) relaxations is a powerful scheme for solving polynomial optimization problems with compact semi-algebraic sets. In this paper, we show that, for convex polynomial optimization, the Lasserre hierarchy with a slightly extended quadratic module always converges asymptotically even in the case of non-compact semi-algebraic feasible sets. We d...

متن کامل

On the Hardest Problem Formulations for the 0/1 0 / 1 Lasserre Hierarchy

The Lasserre/Sum-of-Squares (SoS) hierarchy is a systematic procedure for constructing a sequence of increasingly tight semidefinite relaxations. It is known that the hierarchy converges to the 0/1 polytope in n levels and captures the convex relaxations used in the best available approximation algorithms for a wide variety of optimization problems. In this paper we characterize the set of 0/1 ...

متن کامل

Convergent Semidefinite Programming Relaxations for Global Bilevel Polynomial Optimization Problems

In this paper, we consider a bilevel polynomial optimization problem where the objective and the constraint functions of both the upper and the lower level problems are polynomials. We present methods for finding its global minimizers and global minimum using a sequence of semidefinite programming (SDP) relaxations and provide convergence results for the methods. Our scheme for problems with a ...

متن کامل

A bounded degree SOS hierarchy for polynomial optimization

We consider a new hierarchy of semidefinite relaxations for the general polynomial optimization problem (P ) : f∗ = min{ f(x) : x ∈ K } on a compact basic semi-algebraic set K ⊂ Rn. This hierarchy combines some advantages of the standard LP-relaxations associated with Krivine’s positivity certificate and some advantages of the standard SOS-hierarchy. In particular it has the following attractiv...

متن کامل

On Polynomial Optimization Over Non-compact Semi-algebraic Sets

We consider the class of polynomial optimization problems inf{f(x) : x ∈ K} for which the quadratic module generated by the polynomials that define K and the polynomial c − f (for some scalar c) is Archimedean. For such problems, the optimal value can be approximated as closely as desired by solving a hierarchy of semidefinite programs and the convergence is finite generically. Moreover, the Ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2011